Improvement of asymptotic methods in the unit-Lindley regression models: an application in economic growth data

Authors

DOI:

https://doi.org/10.24302/drd.v15.5431

Abstract

Regression models are widely used in Economics, particularly when the data involved are rates and proportions. The Unit-Lindley regression model is defined for data restricted to the (0,1) range. In regular problems, inference based on asymptotic theory can be unreliable when the sample is small. This is the case of the maximum likelihood estimation and the Wald test. Corrections of biases in the maximum likelihood estimators and adjustments made in the test statistics are a widely used way to solve such problems. In this article, we obtain an expression to the correct the bias and a formula for the second-order covariance matrix for the maximum likelihood estimators in the Unit-Lindley regression model. Numerical evidence shows that the corrected estimators are less biased and that the Wald test based on second-order covariance is more accurate. Finally, an application to economic data is presented, in which the Growth Rate of Real GDP per capita is modeled as a function of openness in constant prices.

Keywords: bias correction; modified Wald test; second-order covariance matrix. Unit-Lindley regression.

Author Biographies

  • Pedro Ricelly Gama de Oliveira, Universidade Federal de Goiás

    Mestre em Economia. Faculdade de Administração Ciências Contábeis e Ciências Econômicas, Universidade Federal de Goiás, Goiânia, Goiás, Brasil. 

  • Tatiane Ferreira do Nascimento Melo da Silva, Universidade Federal de Goiás

    Doutora em Estatística. Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia, Goiás, Brasil.

  • Tiago Moreira Vargas, Universidade Federal de Goiás

    Doutor em Estatística. Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia, Goiás, Brasil.

  • Michelli Karinne Barros da Silva , Universidade Federal de Campina Grande

    Doutora em Estatística. Departamento de Estatística, Universidade Federal de Campina Grande, Campina Grande, Paraíba, Brasil. 

Downloads

Published

2025-06-27

Issue

Section

Artigos

How to Cite

OLIVEIRA, Pedro Ricelly Gama de; SILVA, Tatiane Ferreira do Nascimento Melo da; VARGAS, Tiago Moreira; SILVA , Michelli Karinne Barros da. Improvement of asymptotic methods in the unit-Lindley regression models: an application in economic growth data. DRd - Desenvolvimento Regional em debate, [S. l.], v. 15, p. 427–445, 2025. DOI: 10.24302/drd.v15.5431. Disponível em: https://periodicos.unc.br/index.php/drd/article/view/5431. Acesso em: 28 jun. 2025.

Most read articles by the same author(s)